Competency-Based Curriculum Course Design

SOM Vision and Mission

Competencies, Education Program Objectives, EPA's

Course Goals
Where we want the student to be. Broad statements of the outcome of the learning. What the student will be doing with the learning. Provides the "why," i.e., purpose and relevance.

Course Objectives
The steps needed in the learning to reach the course goals. What the student is able to do at the end of the course; written in specific, measurable terms.

Session Objective (Enabling)
The specific steps needed in the learning to reach the course objectives; organized by themes; written in specific, measurable terms.

Learning Methods/Activities

Assessment
Can the student meet the objectives?

Determines the assessment methods & content

Drives the type of learning

Supports/Reinforces

Drive/Determines

Feedback Loop

Achievement/Support

Outcomes/Measurements: Skills/goals that are demonstrated on clinical performance assessments, OSCEs, Residency.

Hackensack Meridian School of Medicine
<table>
<thead>
<tr>
<th>Course Goals (approximately 3-5)</th>
<th>Purpose</th>
<th>Example</th>
</tr>
</thead>
</table>
| Course Goals are broad statements of the intended learning outcomes. They describe what the students will be doing with the learning. At the end of the course, the students “will....” | • Provides the “why” and purpose of the course.
• Sets clear expectations of what the student will achieve – the end result.
• Aligns to school of medicine’s Education Program Objectives (EPO’s) and competencies.
• To be specific and clear, goals should include descriptive verbs. | At the end of the course, the students will:
1. Use the foundational knowledge and skills to enable them to learn and apply system-, disease-, and organ-specific knowledge and skills in the subsequent systems-based SSR courses. This includes content and skills from the molecular and cellular sciences, anatomy & physiology, pathology & pathophysiology, pharmacology, behavioral, social, and health system sciences, as well as clinical and analytical skills. These will not be all inclusive courses in each area of the sciences, but rather will prioritize content and skills that convey the essential aspects of scientific information and processes as well as the necessary skills needed by physicians to prevent, diagnose, and treat disease at the individual and population level. This will position students to access prior knowledge as they integrate and apply information in future clinical settings and scenarios. |
<table>
<thead>
<tr>
<th>Course Objectives (approximately 5-15)</th>
<th>What</th>
<th>Purpose</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course objectives are the steps needed in the learning to reach the goals. They provide the structure, blueprint and direction. They set the clear expectations of what the student will be able to do. At the end of the course, the students “will be able to...” Course objectives are written in terms of expected learner behaviors and level of specificity. This is done with an action that states what the learner is expected to do to demonstrate knowledge or understanding. (See attached list of verbs related to level of learning). Course level objectives are written at the highest level of what the student will be able to do with the content learned. (i.e., Create, Develop, Evaluate, Synthesize)</td>
<td>Sets clear expectations for what students will learn and be assessed on in the course. Drives the type of learning method/activity. Determines the assessment of the course – there should be at least one exam assessment related to each objective and formative assessments for practice.</td>
<td>At the end of the course, students will be able to: Relate basic clinical parameters (history and physical, laboratory, radiologic) of inflammation (acute and chronic) to underlying molecular and biochemical underpinnings. Interpret the likelihood of tissue repair versus regeneration based on the type and degree of tissue injury.</td>
<td></td>
</tr>
<tr>
<td>Session/Objectives (approximately 3-8)</td>
<td>What</td>
<td>Purpose</td>
<td>Example</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>---------------------------------</td>
<td>----------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| Session or enabling objectives are the steps needed in the learning to reach the course objectives stated in a single sentence. They set the clear expectations of what the student will learn in the session. At the end of the session, the students “will be able to...” Session objectives are written in behavioral terms with descriptive verbs, in the same format as course objectives but in more granular detail and usually but not always at a lower level. (i.e., use verbs such as identify, describe, discuss, synthesize, evaluate, etc.) Think about how you will assess the students and write the verb at this level. | Sets clear expectations for what students will learn in a session and is assessed with a formative or smaller summative assessment. It also drives the type of learning method/activity for the session. | At the end of the session, students will be able to:
• Describe how an acute inflammatory response can transition into a chronic inflammatory response.
• Describe the key functions of cell types involved in the progression of the inflammatory response.
• When given a patient scenario with an injury, explain how the regeneration of injured cells occurs by cell proliferation.
For Systems courses, the level of learning will be higher and will combine multiple concepts learned previously:
• Explain how changes in heart contractility, heart rate, and ventricular compliance are achieved.
• Relate alterations in preload, afterload, contractility, heart rate, and/or ventricular compliance to cardiac output, systemic arterial pressure, pulmonary vascular pressure, and central venous pressure.
• When given a patient with an altered physiological condition, predict how the condition will alter preload, afterload, contractility, and/or compliance; and predict the effects on cardiac output, pulmonary vascular pressure, and systemic arterial pressure. |